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Spa,al interpolators in Observable Plot 
Philippe Rivière ¹, Mike Bostock ² 

Abstract – We describe the spa,al interpolators implemented in Observable Plot, that allow the user to create raster 
images and vector topographic contours from a set of spa,ally located sample values. 

 

1. OBSERVABLE PLOT 
Observable Plot is a free, open-source, JavaScript library 
for visualizing tabular data, focused on accelera,ng 
exploratory data analysis. It has a concise, memorable, 
yet expressive API, featuring scales and layered marks in 
the grammar of graphics style [1]. 

2. SPATIAL INTERPOLATION 
Given a set of samples with known loca,ons on a plane 
and values (such as the measured temperature in the 
given loca,on), we call interpola*on any technique that 
es,mates the value in any other loca,on. Such a func,on 
may follow one or several addi,onal requirements, such 
as con,nuity, differen,ability, exactness (i.e. does the 
interpolator return the true value when evaluated on a 
sample loca,on), etc. 

The first law of geography, as Waldo Tobler famously put 
it, is that “everything is related to everything else, but 
near things are more related than distant things [2].” 
According to this law, we call spa*al interpola*on any 

such func,on where nearer data points have more 
influence on the interpolated value than farther ones. 

Many such algorithms have been designed for 
quan,ta,ve data: Inverse Distance Weighted (IDW), 
Kernel Density Es,ma,on (KDE), Kriging, Mean value 
coordinates, Natural neighbor interpola,on, Bicubic 
interpola,on, Stewart poten,als, Thin plate spline…  

In the following we describe Observable Plot’s four built-
in spa,al interpolators. 

Nearest. One obvious candidate is the nearest sample 
interpola,on. For any (unknown) loca,on, es,mate its 
value as being equal to the value of the nearest sample 
(with some aggrega,on rule for samples taken at the 
same loca,on). This results in Voronoi cells around each 
sample, with a uniform value equal to the sample value. 
This algorithm is exact, but not con,nuous (Fig. 1). 

Barycentric. Constructs a Delaunay triangula,on of the 
samples, and then for each pixel in the raster grid, 

Figure 1. In 1955 the Great Britain aeromagnetic survey measured the Earth’s magnetic field by plane. Each sample recorded 
the longitude and latitude alongside the strength of the international geomagnetic reference field (IGRF). Interpolated with 

nearest.
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determines the triangle that covers it and mixes the 
values associated with the triangle’s ver,ces using 
weighted barycentric coordinates (1 at any corner). Exact 
and con,nuous. 

Random-walk. For each pixel in the raster grid, ini,ates a 
random walk, stopping when either the walk is within a 
given distance (minDistance) of a sample or the 
maximum allowable number of steps (maxSteps) have 
been taken, and then assigning the current pixel the 
closest sample’s value. The random walk uses the “walk 
on spheres” algorithm in two dimensions described by 
Sawhney and Crane [3]. It is exact, but not con,nuous 
(though blurring can help make it con,nuous). 

None. For the sake of completeness, let’s also men,on 
the none interpolator: project any given sample to the 
grid, and return unknown for points on the grid that have 
no associated sample. 

3. QUANTITATIVE VS. CATEGORICAL 
For the nearest and random-walk methods, the selected 
sample value is returned as is, which makes no 
difference whether categorical or quan,ta,ve. For the 
barycentric method, though, we need to define how 

mixing works. On quan,ta,ve values, the mixing takes a 
(linearly) weighted average of the values. For categorical 
values, one of the 3 selected samples is picked at 
random, with a probability distribu,on equal to the 
barycentric weights. This allows to create a map, say, of 
the expected species of an iris given its petal and sepal 
lengths, where the resul,ng color texture represents a 
spa,ally variable probability distribu,on. The image 
generated (fig. 2) can help build an intui,on for a 
machine-learning model that would characterize the 
data in a more sta,s,cally controlled way. 

4. CONTOURS 
With quan,ta,ve values, the generated rectangular 
matrix of interpolated values can serve as a base for the 
tradi,onal marching squares algorithm, to derive 
contours of equal value (isolines, topographic contours). 
This in fact generalizes the classic d3-contour module [4] 
to non-gridded data. In that case any blurring —for 
smoother contours— happens on unscaled values. 

5. PROJECTIONS & MAPS 
Plot’s spa,al interpolators operate on projected 
coordinates in pixel space—not on the original data 
dimensions. As a consequence, they are compa,ble with 

Figure 2. A scatterplot of Iris species. The texture, generated with the random-walk interpolator, reflects the growing uncertainty as 
we are farther from any sample location. 
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Plot’s projec,on system, and can be used to derive world 
maps of quan,ta,ve or categorical data (fig. 3). 

6. EXTENSIBILITY 
These methods are vanilla JavaScript func,ons that read 
in three channels (Value, and projected coordinates X 
and Y), a width and a height, and return as output a 
rectangular array of width × height interpolated values. 
They can be used outside of a plot, and indeed outside of 
Observable Plot, as generic transforma,ons for custom 
data visualiza,on or for sta,s,cal analysis. Conversely, 
Plot supports spa,al interpolators specified as an 
arbitrary func,on, which allows anyone to implement 
any other spa,al interpola,on algorithm. For example, 
we are experimen,ng with a subs,tu,on of a blue noise 
func,on for pseudo-random generator, which results in 
smoother (and more sta,s,cally accurate) textures for 
the random-walk method. Plot’s API makes it rela,vely 
easy to plug in a new implementa,on of an old 
algorithm, or your newly-designed algorithm. 

7. FUTURE WORK & SUGGESTIONS 
Implemen,ng some of the classical algorithms described 
in sec,on 3 would provide a wider range of op,ons to 
interpolate quan,ta,ve data. New op,ons to exis,ng 
interpolators —such as a cutoff distance for the random-
walk— could be provided to fit users’ needs. Other types 
of spa,ally-defined func,ons, beyond interpolators, 
could also be implemented within the same API: a 
density es,mator, a distance field,  a Poisson poten,al 
flow… 

8. CONCLUSION 
Observable Plot’s spa,al interpolators are a recent 
contribu,on to the domain of data visualiza,on and map 
making. They generalize tools such as d3-contour, by 
making them work on non-gridded data samples. Beyond 
data visualiza,on, the random-walk interpolator can 
prove interes,ng to, e.g., teach machine learning. The 
system is open-source and offers a public API that allows 
anyone to add their own implementa,on of any arbitrary 
spa,al algorithm. 
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Figure 3. A map of global atmospheric water vapor measurements from NASA Earth Observations, projected with the Equal 
Earth projection.
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