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Analyse en Géodésiques Principales d’Arbres
de Fusion (et de Diagrammes de Persistance)

Principal Geodesic Analysis of Merge Trees (and Persistence Diagrams)

Mathieu Pont, Jules Vidal and Julien Tierny

Fig. 1: Visual analysis of the Earthquake ensemble with Merge Tree Principal Geodesic Analysis (MT-PGA, (a): one
member per ground-truth class). Our framework computes a coordinate system (b) for the Wasserstein metric space
of merge trees B by adjusting geodesic axes (blue and black , (b)) to optimize a fitting energy. This enables the adaptation
to merge trees of typical applications of Principal Component Analysis, such as data reduction, where the input trees are
accurately reconstructed ((c), right), by simply storing their MT-PGA coordinates, or dimensionality reduction. MT-PGA
enables the computation of a Principal Geodesic Surface (b), which complements its planar layout (g) by better conveying
visually the curved nature of B. MT-PGA supports the efficient reconstruction of user-defined locations, for the interactive
exploration of B: the reconstruction of the purple curve (f) enables the navigation from the trees of the first cluster (dark
red, (b)) to the second (orange, (b)) and third (pink, (b)) clusters. MT-PGA also introduces Persistence Correlation Views
(d) which enable the visual identification of the features which are the most responsible for the variability in the ensemble
(high correlation, near the disk boundary, (d)) as well as their direct inspection in the data (matching colors (a)).

English Abstract—This paper presents a computational framework for the Principal Geodesic Analysis of merge trees (MT-
PGA), a novel adaptation of the celebrated Principal Component Analysis (PCA) framework [8] to the Wasserstein metric space
of merge trees [9]. We formulate MT-PGA computation as a constrained optimization problem, aiming at adjusting a basis of
orthogonal geodesic axes, while minimizing a fitting energy. We introduce an efficient, iterative algorithm which exploits shared-
memory parallelism, as well as an analytic expression of the fitting energy gradient, to ensure fast iterations. Our approach
also trivially extends to extremum persistence diagrams. Extensive experiments on public ensembles demonstrate the efficiency
of our approach – with MT-PGA computations in the orders of minutes for the largest examples. We show the utility of our
contributions by extending to merge trees two typical PCA applications. First, we apply MT-PGA to data reduction and reliably
compress merge trees by concisely representing them by their first coordinates in the MT-PGA basis. Second, we present a
dimensionality reduction framework exploiting the first two directions of the MT-PGA basis to generate two-dimensional layouts
of the ensemble. We augment these layouts with persistence correlation views, enabling global and local visual inspections of the
feature variability in the ensemble. In both applications, quantitative experiments assess the relevance of our framework. Finally,
we provide a C++ implementation that can be used to reproduce our results.

✦

1 INTRODUCTION

Wether they are acquired or simulated, modern
datasets are constantly gaining in detail and com-
plexity, given the continuous improvement of acquisi-
tion devices or computing resources. This geometrical
complexity is a difficulty for interactive data analysis
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and interpretation. This observation motivates the
development of concise yet informative data repre-
sentations, capable of encoding the main features of
interest and visually representing them to the users.

In that regard, Topological Data Analysis (TDA) [6]
has demonstrated its ability to generically, robustly
and efficiently reveal implicit structural patterns hid-
den in complex datasets.

Among the feature representations studied in TDA,
the merge tree [3], which describes the global struc-
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Fig. 2: Critical points (spheres, larger radius: maxima),
persistence diagram (left inset), merge tree (center
inset) and branch decomposition tree (right inset) of
a clean (a) and noisy (b) scalar field. In both cases,
four main hills are clearly represented with salient
features in the persistence diagram and the merge
tree. Branches with low persistence (less than 10% of
the function range) are shown with small white arcs.

ture of the connected components of the sub-level
sets of scalar datasets (Fig. 2), is a popular instance
in the visualization community [1, 2, 4]. In many
applications, on top of the increasing geometrical data
complexity, an additional challenge emerges, related
to ensemble datasets. These describe a phenomenon not
only with a single dataset, but with a collection of
datasets, called ensemble members, in order to charac-
terize the variability of the phenomenon under study.

In principle, a topological representation (like the
merge tree) can be computed for each ensemble mem-
ber. While this strategy has several practical advan-
tages (direct representations of the features of inter-
est, reduced memory footprint), it shifts the analysis
problem from an ensemble of datasets to an ensemble
of merge trees. Then, a major challenge consists in de-
signing statistical tools for such an ensemble of topo-
logical descriptors, to support its interactive analysis
and interpretation. In this direction, a series of recent
works focused on the notion of average topological de-
scriptor [7, 9, 12, 13, 14], with applications to ensemble
summarization and clustering. However, while such
averages synthesize a topological descriptor which
is well representative of the ensemble, they do not
describe the topological variability of the ensemble.

2 CONTRIBUTIONS

This paper addresses this issue and goes beyond sim-
ple averages by adapting the celebrated framework of
Principal Component Analysis (PCA) [8] to ensembles
of merge trees. For that, we introduce the novel notion
of “Merge-Tree Principal Geodesic Analysis” (MT-PGA),
which captures the most informative geodesics (i.e.
analogs of straight lines on the abstract space of merge
trees) given the input ensemble, hence facilitating
variability analysis and visualization.

In particular, we formalize the computation of an
orthogonal basis of principal geodesics in the Wasser-
stein metric space of merge trees [9] as a constrained
optimization problem, inspired by previous work on
the optimal transport of histograms [5, 11], which we
extend and specialize to merge trees. We introduce

an efficient iterative algorithm, which exploits an
analytic expression of the energy gradient to ensure
fast iterations. Moreover, we document accelerations
with shared-memory parallelism. Extensive experi-
ments indicate that our algorithm produces bases of
acceptable reconstruction quality within minutes, for
real-life ensembles extracted from public benchmarks.
Since our framework is based on the Wasserstein dis-
tance between merge trees [9], which generalizes the
Wasserstein distance between persistence diagrams
[12], it trivially extends to persistence diagrams by
simply adjusting a parameter.

3 APPLICATIONS
We illustrate the utility of our contribution in two ap-
plications. First, we show that the principal geodesic
bases computed by our algorithm can result in an
important compression of ensembles of merge trees,
while still enabling a successful post-processing for
typical visualization tasks such as feature tracking or
ensemble clustering. Second, we present an extended
application of our work to dimensionality reduction,
for the visual inspection of the ensemble variability
via two-dimensional embeddings, where we show
that the views generated by our approach (e.g. the
Principal Geodesic Surface and the Persistence Cor-
relation View) preserve well the intrinsic metric be-
tween merge trees, as well as the global structure
of the input ensembles, while enabling the visual
inspection of the individual features which are the
most responsible for the variability in the ensemble.
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