
VISU 2021 1

Visualization of large meshes and solutions
from numerical simulations with ViZiR 4

Visualisation de maillages et solutions de grandes tailles issus de simulations numériques avec ViZiR 4

Matthieu Maunoury, Adrien Loseille

English Abstract—ViZiR 4 is a light, simple and interactive high-order meshes and solutions visualization software using
OpenGL 4 graphic pipeline. The use of OpenGL Shading Language (GLSL) allows to perform pixel exact rendering of high
order solutions on flat elements and almost pixel exact rendering on curved elements with tessellation done directly on GPU.
Post-processing tools, such as picking, isolines, clipping, capping are provided to interact on the fly with the results displayed.

F

1 INTRODUCTION

Numerical simulations are a common way to pre-
dict the behavior of physical phenomenons without
using prototypes or experimentations. In particular,
high-order methods became very popular as they
allow to perform complex computations efficiently.
Numerical simulations have applications in many
fields such as Computational Fluid Dynamic, acous-
tics, electromagnetism or medical modeling.

The visualization of meshes and solutions is a key-
stone of the numerical simulations process as it allows
to check the validity and quality of the meshes, dis-
play the numerical solutions computed and analyze
the potential problems on meshes and solutions.

However, the post-processing of high order meshes
and solutions is still a current and complex challenge.
Indeed, most of the standard visualization softwares
(e.g. ParaView [1], Visit [2], Tecplot [12], Gmsh [4])
are based on linear primitives as imposed by the
baseline graphic pipeline commonly-used. To bypass
these limitations, a low-order remeshing strategy ex-
ists. The principle is therefore to define a sub-mesh
and affine representations which approximate the so-
lution. A visualization error, corresponding to the gap
between the numerical solution and its representation,
is therefore introduced and controlled [4], [6], [7],
[11], [13] and the rendering obtained is, as a conse-
quence, inaccurate. Some other approaches are based
on raycasting [8]–[10]. For each pixel, rays are cast
to determine the color for this pixel. However, this
solution has limited interactive capabilities [8].

We are developing ViZiR 4 [3], [5], an interac-
tive and reliable high order meshes and solutions
visualization platform, based on OpenGL Shading
Language (GLSL).

• Matthieu Maunoury: GAMMA team, Inria Saclay, France
Matthieu.Maunoury@inria.fr.

• Adrien Loseille: GAMMA team, Inria Saclay, France
E-mail: Adrien.Loseille@inria.fr.

2 MAIN FEATURES OF VIZIR 4
2.1 Fast I/O

A key to have an efficient visualization is to be able
to quickly open mesh and solution files. Input and
output are handle by the libMeshb1 library. The files
follow the GMF format provided by this library. For
instance, the mesh of Lucy (see Fig. 1) with more than
14 millions vertices and 28 millions triangles (642 Mb)
is opened is less than 1.5 seconds.

Fig. 1. Rendering of a large mesh of 14M vertices and
28M triangles in 7.5 seconds (total time) on a laptop.

2.2 Pixel exact rendering on flat elements

OpenGL 4 graphic pipeline flexibility allows to
compute on the fly the solution. It leads to a pixel
exact rendering when flat elements (of degree one)
are considered regardless of the degree of the solu-
tion. This recent language (GLSL) enables ViZiR 4
to certify a faithful and interactive depiction. High
order solutions are natively handled by ViZiR 4 on
surface and volume (tetrahedra, pyramids, prisms,
hexahedra) meshes which can naturally be hybrid.
Fig. 2 shows an example of pixel exact rendering of
high-order solution.

1. https://github.com/LoicMarechal/libMeshb



VISU 2021 2

Fig. 2. High-order (degree Q6) solution of a wave propagation problem. Right: zoom of the solution on 4
hexahedra.

2.3 Tessellation on GPU for high-order elements

When more complex geometries are considered,
curved elements perform a better approximation of
the geometry. In this case, tessellation shaders occur
in OpenGL pipeline (see [3], [5] for more details on
the shaders pipeline) to tessellate all elements directly
on the GPU. For solutions on such curved elements,
almost pixel exact rendering is ensured. An example
of curved mesh is shown on Fig. 3 and an example of
tessellation is shown on Fig. 4.

Degree 1 (P 1) mesh Degree 2 (P 2) mesh

Fig. 3. Comparison of rendering of meshes of degree
1 (left) and 2 (right) for the same number of elements.

2.4 Post-processing tools and interactivity

Many post-processing tools are available to make
the analyses of the results possible. For instance:

• Picking elements to get information.
• Hide surfaces by reference (after picking).
• Isolines rendering (see Fig. 5).

Fig. 4. Rendering of high-order mesh (left) and its
tessellation constructed by the GPU (right).

Fig. 5. Examples of isolines rendering.

• Clip planes. All volume elements belonging to a
plane are displayed (see Fig. 6).

• Filters. According to a criterion, for instance ele-
ment quality or minimal jacobian, all elements in
a given range of values are filtered and displayed
in a different color than others (see Fig. 7).



VISU 2021 3

Fig. 6. Examples of cut planes.

Fig. 7. Use of filters. All elements in light blue appear
as they belong to the range of the filter (for a given
criterion).

2.5 Rendering performances
All the results collected have been generated with

the same laptop: a MacBook Pro with 2.6 GHz 6-
core Intel Core i7 with 32 Gb of RAM, and the
GPU is a AMD Radeon Pro Vega 20 4 Gb. For the
large mesh of Lucy (see Fig. 1) with more than 14
millions vertices and 28 millions triangles (642 Mb),
the number of Frames Per Seconds (FPS) is around 28,
which is enough to be interactive. All other results are
extremely fluid with 60 FPS (requested maximum).

3 CONCLUSION

More details on ViZiR 4, some examples, samples
and executables can be found on our website http:
//vizir.inria.fr

REFERENCES

[1] U. Ayachit. The paraview guide: a parallel visualization application.
Kitware, Inc., 2015.

[2] H. Childs. Visit: An end-user tool for visualizing and analyz-
ing very large data. 2012.

[3] R. Feuillet, M. Maunoury, and A. Loseille. On pixel-exact
rendering for high-order mesh and solution. Journal of Com-
putational Physics, 424:109860, 2021.

[4] C. Geuzaine and J.-F. Remacle. Gmsh: A 3-d finite element
mesh generator with built-in pre-and post-processing facili-
ties. International journal for numerical methods in engineering,
79(11):1309–1331, 2009.

[5] A. Loseille and R. Feuillet. Vizir: High-order mesh and
solution visualization using opengl 4.0 graphic pipeline. 56th
AIAA Aerospace Sciences Meeting, AIAA Scitech, 2018.

[6] M. Maunoury. Méthode de visualisation adaptée aux simulations
d’ordre élevé. Application à la compression-reconstruction de champs
rayonnés pour des ondes harmoniques. PhD thesis, 2019.

[7] M. Maunoury, C. Besse, V. Mouysset, S. Pernet, and P.-A. Haas.
Well-suited and adaptive post-processing for the visualization
of hp simulation results. Journal of Computational Physics,
375:1179–1204, 2018.

[8] B. Nelson, E. Liu, R. M. Kirby, and R. Haimes. Elvis: A system
for the accurate and interactive visualization of high-order
finite element solutions. IEEE transactions on visualization and
computer graphics, 18(12):2325–2334, 2012.

[9] B. W. Nelson. Accurate and interactive visualization of high-order
finite element fields. PhD thesis, 2012.

[10] J. Peiro, D. Moxey, B. Jordi, S. Sherwin, B. Nelson, R. Kirby, and
R. Haimes. High-order visualization with elvis. In IDIHOM:
Industrialization of High-Order Methods-A Top-Down Approach,
pages 521–534. Springer, 2015.

[11] W. J. Schroeder, F. Bertel, M. Malaterre, D. Thompson, P. P.
Pebay, R. O’Bara, and S. Tendulkar. Methods and framework
for visualizing higher-order finite elements. IEEE Transactions
on Visualization and Computer Graphics, 12(4):446–460, 2006.

[12] TecPlot Inc. TecPlot. https://www.tecplot.com/.
[13] L. Xu, X. Ren, X. Xu, H. Li, Y. Tang, and Y. Feng. An adap-

tive visualization tool for high order discontinuous galerkin
method with quadratic elements. In 2017 IEEE International
Conference on Computer and Information Technology (CIT), pages
176–183. IEEE, 2017.


