Optimized Rendering Techniques

Harness the power of ParaView

Anthony Geay, Charles Gueunet, Joachim Pouderoux, Thomas Caissard, Nicolas Vuaille, Mathieu Westphal
Features

Tackle and answer customer’s technical challenges with:

- Massive data visualization
- Highly customizable framework
- Community of +10 thousands users
- Cross-platform
- +1.35 million lines of code
- BSD License

What for

- HPC
- Visualization
- VR

ParaView Scientific visualization software
ParaView and VTK are very generic tools for scientific visualization.

There is no shortcut for the general case.
- surfaces must be extracted.
- computation must be done.

What about specific cases?
ParaView flexible architecture lets user and developers create their own optimized rendering techniques in dedicated plugins for specific cases.
- NvidiaIndex plugin for volume rendering
- StreamLinesRepresentation for streamlines
StaticMeshPlugin : The problem

- In many domains, simulation data is temporal
- In some cases, it has variable data with static geometries
- ParaView still needs to read and process the geometry for each time step!
- What if ParaView could know if the geometry changed or not?

a temporal dataset with a static geometry from Code_Saturne
How is temporal unstructured data stored in VTK / ParaView?

- Points/Cells info and arrays are stored in similar ways
- The user knows that the geometry is not changing
- Can the software know?

Illustration of point data changing over time
The geometry will be read and transfer at each timesteps, alongside the point and cells arrays.
Once the geometry has been read and processed *once*, it will never be read or processed again, only the data arrays will be read and processed.

The geometry is cached within the filters.

The cache can be invalidated if a change is detected on the geometry.
Without the static mesh plugin, one time step in the example takes roughly 5s to render.

This is not interactive.
StaticMeshPlugin: How does it look?

With the static mesh plugin, one time step in the example takes roughly <1s to render.

This is interactive.

~13M cells / ~34M points real data rendered with the StaticMeshPlugin
StaticMeshPlugin: Limitations / Information

- Requires to compile ParaView
- Reader implementation is complex
 - EnSight reader in the plugin
 - MedReader in Salome
- Each filter should be reimplemented to support this optimization
- Non-Static filter “breaks” the static pipeline

Blog for benchmarks and implementation details:
https://blog.kitware.com/staticmeshplugin/
FastSurfaceMultiblock: The problem

- Certains volumic file format provides already computed surface information
 - OpenFOAM
 - Other proprietary format
- ParaView always want to compute the surface of a volume for rendering
- Could we directly use the surface information?

The OpenFoam Motorbike, rendered with the Intel OSPRay pathtracer in ParaView.
FastSurfaceMultiblock: A solution

- In OpenFOAM format, surfaces are clearly identified
- New representations could be added to use this “block” as the surface output instead of computing the surface of the internal mesh
- No computation needed!
FastSurfaceMultiblock: How does it look?

Without the plugin, switching to surface representation takes roughly 10s to render. This is not interactive.
FastSurfaceMultiblock: How does it look?

Using the plugin, switching to fast surface representation is instantaneous!

This is interactive.
FastSurfaceMultiblock: Limitations / Information

- Requires to compile ParaView
- Dependent of the structure of the data
- Require to set specific settings in ParaView

Blog for benchmarks and implementation details:
https://blog.kitware.com/fastsurfacemultiblockrepresentation-plugin-for-paraview/
Questions?

Supported/Initiated by:

- Audi
- EDF
- CodeSaturne