VISU 2019

Visualization of high order numerical results
with ViZiR

Visualisation de simulations numériques d’ordre élevé avec ViZiR

Matthieu Maunoury, Rémi Feuillet, Adrien Loseille

English Abstract—We present ViZiR: a light, simple and interactive high-order meshes and solutions visualization software
using OpenGL 4 graphic pipeline. The use of OpenGL Shading Language (GLSL) allows to perform pixel exact rendering of high
order solutions on flat elements and almost pixel exact rendering on curved elements. Post-processing tools, such as picking,
isolines, clipping, capping are provided to interact on the fly with the results displayed.

1 INTRODUCTION

High order (HO) methods (for instance high-order fi-
nite elements or Discontinuous Galerkin methods) be-
come very popular as they allow to perform complex
computations efficiently and get good convergence
rates with almost no numerical dissipation. Then,
many fields, such as Computational Fluid Dynamic,
acoustics, electromagnetism or medical modeling, use
this kind of methods. However, the post-processing
of high order meshes and solutions is still a current
and complex challenge. Indeed, most of the standard
visualization softwares (e.g. ParaView [1], Visit [2],
Tecplot [11], Gmsh [3]) are based on linear prim-
itives as imposed by the baseline graphic pipeline
commonly-used. As a consequence, these tools are
not able to visually inspect and validate meshes and
solutions employed in high order methods.

To bypass these limitations, two main strategies
exist: low-order remeshing and pixel-exact rendering.
In the low-order remeshing strategy, the idea is to
transform the data given by the high-order scheme in
a combination of affine functions so that a standard
visualization software is used to post-process it. The
principle is therefore to define a mesh and affine
representations which approximate the solution. A
visualization error, corresponding to the gap between
the numerical solution and its representation, is there-
fore introduced and controlled. The main difference
between the works is how the mesh is created or
reffined and the way the visualization error is defined
and controlled [3], [5], [6], [10], [12]. The second
strategy is dedicated to high-order solutions. Some
approaches are based on raycasting [7]-[9]. The idea

o Matthieu Maunoury: GAMMAZ3 team, INRIA Saclay, France
Matthieu. Maunoury@inria.fr.

o Rémi Feuillet: GAMMAS3 team, INRIA Saclay, France
E-mail: Remi.Feuillet@inria.fr.

o Adrien Loseille: GAMMAS3 team, INRIA Saclay, France
E-mail: Adrien.Loseille@inria.fr.

is that for each pixel, rays are cast to determine the
color for this pixel. However, two non-linear problems
(root finding problem and inversion of the geometrical
mapping) have to be solved and are very costly. As
a consequence, this solution has limited interactive
capabilities [7]. Our method [4] intends to be a com-
promise between these two strategies. The goal is
to keep interactivity and to guarantee a pixel-exact
rendering on linear elements or almost pixel-exact
rendering on curved elements without the need of
extra subdivisions or raycasting.

We present ViZiR!, an interactive and reliable high
order meshes and solutions visualization platform,
based on OpenGL Shading Language (GLSL).

2 MAIN CHARACTERISTICS OF VIZIR

ViZiR is very easy to use. As input, a mesh file includ-
ing information on the elements and the connectivity
as well as a solution file containing the degrees of
freedom computed by a numerical code are given.
These files follow the GMF format provided by the
libMeshb? library.

Thanks to the pixel rendering, there is no visu-
alization error (gap between the numerical solution
and its representation) to be controlled and thus no
parameter introduced. The only case a parameter is
needed is related to the approximation of curved
elements. However, in this case, it is possible to
refine or unrefine this approximation on the fly and
interactively in the software.

Figure 2 compares pixel exact rendering obtained
with ViZiR to affine representations for a polynomial
function of degree 3 on a simple element. Even with
an adaptive subdivision, which allows a better ap-
proximation than with an uniform one, there is still a
visualization error which is particularly visible when
isolines are displayed (see figure 2 right and middle).

1. http:/ /vizirinria.fr
2. https:/ /github.com/LoicMarechal/libMeshb



VISU 2019

Fig. 1.
triangles.

Example of a curved mesh of 24560 P2-

2.1

OpenGL 4 graphic pipeline flexibility allows to com-
pute on the fly the solution. It leads to a pixel exact
rendering when flat elements (of degree one) are
considered regardless of the degree of the solution.
This recent language (GLSL) enables ViZiR to cer-
tify a faithful and interactive depiction. High order
solutions are natively handled by ViZiR on surface
and volume (tetrahedra, pyramids, prisms, meshes,
hexahedra) meshes which can naturally be hybrid.

An example of pixel exact rendering on flat ele-
ments is presented on figure 3. The function is a mode
defined as

Pixel exact rendering on flat elements

f(z,y,z) =sin(100 7 x) sin(100 7 y) sin(100 7 2), (1)

where the length of the cube is 2. As the wavelength is
0.02, the solution is very oscillating. Nevertheless, all
this richness of the function is perfectly reproduced.

2.2 Almost pixel exact rendering on curved ele-
ments

When more complex geometries are considered,
curved elements perform a better approximation of
the geometry. In this case, tesselation shaders occur
in OpenGL pipeline and ensure a nearly pixel exact
rendering (see [4] for more details on the shaders
pipeline). Curved elements are subdivided and an
exact rendering is done on these sub-elements. This
subdivision is done internally, that is in the graphic
pipeline. So, there is no increase of the ram memory
used. An example of curved mesh is shown on figure
1.

2.3 Post-processing tools and interactivity

In addition to the solution representation, all the post-
processing tools have to be included in the visualiza-
tion software in order to make the analyses of the
results possible.

In ViZiR, it is possible to pick elements to have
information on the selected cell or on the mesh. This
picking tool can be used to hide or display elements
whose reference is the same. It is particularly useful

for instance when volume meshes are treated. Fur-
thermore, isolines can be displayed in ViZiR as shown
on figure 2. Finally, clipping or capping can be done.
This last point allows to investigate volume domains
and therefore is crucial (see figure 4). Also, when
dealing with HO solutions, the range of their values
is estimated in a preprocessing step. Unlike standard
methods, no sampling is needed to compute the solu-
tion. A proper approximation of extrema still remains
mandatory to define the palette of the colormap.

3 CONCLUSION

The development of ViZiR using OpenGL 4 is still in
progress but many tools are already available (pixel
rendering, isolines, picking, clipping, capping for flat
elements). You can visit http://vizir.inria.fr to down-
load the demo and try ViZiR.

REFERENCES

[1] U. Ayachit. The paraview guide: a parallel visualization application.
Kitware, Inc., 2015.

[2] H. Childs. Visit: An end-user tool for visualizing and analyz-
ing very large data. 2012.

[3] C. Geuzaine and J.-F. Remacle. Gmsh: A 3-d finite element
mesh generator with built-in pre-and post-processing facili-
ties. International journal for numerical methods in engineering,
79(11):1309-1331, 2009.

[4] A. Loseille and R. Feuillet. Vizir: High-order mesh and
solution visualization using opengl 4.0 graphic pipeline. 56th
AIAA Aerospace Sciences Meeting, AIAA Scitech, 2018.

[5] M. Maunoury. Méthode de visualisation adaptée aux simulations
d’ordre élevé. Application a la compression-reconstruction de champs
rayonnés pour des ondes harmoniques. PhD thesis, 2019.

[6] M.Maunoury, C. Besse, V. Mouysset, S. Pernet, and P.-A. Haas.
Well-suited and adaptive post-processing for the visualization
of hp simulation results. Journal of Computational Physics,
375:1179-1204, 2018.

[7] B. Nelson, E. Liu, R. M. Kirby, and R. Haimes. Elvis: A system
for the accurate and interactive visualization of high-order
finite element solutions. IEEE transactions on visualization and
computer graphics, 18(12):2325-2334, 2012.

[8] B. W. Nelson. Accurate and interactive visualization of high-order
finite element fields. PhD thesis, 2012.

[9] ].Peiro, D. Moxey, B. Jordi, S. Sherwin, B. Nelson, R. Kirby, and
R. Haimes. High-order visualization with elvis. In IDIHOM:
Industrialization of High-Order Methods-A Top-Down Approach,
pages 521-534. Springer, 2015.

[10] W. J. Schroeder, F. Bertel, M. Malaterre, D. Thompson, P. P.
Pebay, R. O’Bara, and S. Tendulkar. Methods and framework
for visualizing higher-order finite elements. IEEE Transactions
on Visualization and Computer Graphics, 12(4):446-460, 2006.

[11] TecPlot Inc. TecPlot. https://www.tecplot.com/.

[12] L. Xu, X. Ren, X. Xu, H. Li, Y. Tang, and Y. Feng. An adap-
tive visualization tool for high order discontinuous galerkin
method with quadratic elements. In 2017 IEEE International
Conference on Computer and Information Technology (CIT), pages
176-183. IEEE, 2017.



VISU 2019 3

SN
VRS

(N

NN
DRNNNNNR
N b NNNIN
(a) Rendering with ViZiR (b) Rendering with uniform (c) Rendering with adaptive
subdivision subdivision

(d) Isolines with ViZiR (e) Isolines with uniform sub- (f) Isolines with adaptive sub-
division division

Fig. 2. Rendering (top) and isolines (bottom) of a P3-solution. Left: pixel exact rendering with VizZiR. Middle:
uniform subdivision of 169 triangles. Right: adaptive subdivision of 169 triangles.

(a) Far view representing a continuous function (b) Zoom on the rendering

Fig. 3. Pixel exact rendering of a mode in a mesh of flat elements (3832 tetrahedra).

(a) Clipping (the mesh is displayed) (b) Capping (intersecting the cut plane)

Fig. 4. Examples of clipping (a) and capping (b) for a Q° solution on a mesh of 8000 hexahedra.



