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Suivi topologique rapide et robuste par
appariement de Wasserstein augmenté

Lifted Wasserstein Matcher for Fast and Robust Topology Tracking

Maxime Soler, Mélanie Plainchault, Bruno Conche, Julien Tierny

This talk presents a robust and efficient method for tracking topological features in time-
varying scalar data. Structures are tracked based on the optimal matching between persis-
tence diagrams with respect to the Wasserstein metric. This fundamentally relies on solving
the assignment problem, a special case of optimal transport, for all consecutive timesteps. Our
approach relies on two main contributions. First, we revisit the seminal assignment algorithm
by Kuhn and Munkres which we specifically adapt to the problem of matching persistence
diagrams in an efficient way. Second, we propose an extension of the Wasserstein metric
that significantly improves the geometrical stability of the matching of domain-embedded
persistence pairs. We show that this geometrical lifting has the additional positive side-effect of
improving the assignment matrix sparsity and therefore computing time. The global framework
computes persistence diagrams and finds optimal matchings in parallel for every consecutive
timestep. Critical trajectories are constructed by associating successively matched persis-
tence pairs over time. Merging and splitting events are detected with a geometrical threshold in
a post-processing stage. Extensive experiments on real-life datasets show that our matching
approach is up to two orders of magnitude faster than the seminal Munkres algorithm.
Moreover, compared to a modern approximation method, our approach provides competitive
runtimes while guaranteeing exact results. We demonstrate the utility of our global framework
by extracting critical point trajectories from various time-varying datasets and compare it to
the existing methods based on associated overlaps of volumes. Robustness to noise and
temporal resolution downsampling is empirically demonstrated.
Index Terms—opological Data Analysis, Optimal Transport, Feature Trackingopological Data Analysis, Optimal Transport,
Feature TrackingT
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1 INTRODUCTION

Performing feature extraction and object tracking is
an important topic in scientific visualization, for it is
key to understanding time-varying data. Specifically,
it allows to detect and track the evolution of regions
of interest over time, which is central to many sci-
entific domains, such as combustion [2], aerodynam-
ics [6], oceanography [12] or meteorology [18]. With
the increasing power of computational resources and
resolution of acquiring devices, efficient methods are
needed to enable the analysis of large datasets.

The emergence of new paradigms for scientific
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simulation, such as in-situ and in-transit [1], [9], [11],
[13], [17], clearly exhibits the ambition to reach toward
exascale computing [4] in the forthcoming years. In
this context, as both spatial and temporal resolutions
of acquired or simulated datasets keep on increasing,
understanding the evolution of features of interest
throughout time proves challenging.

Topological data analysis has been used in the
last decades as a robust and reliable setting for hi-
erarchically defining features in scalar data [5]. In
particular, its successful application to time-varying
data [3], [14] makes it a prime candidate for tracking.
Both topological analysis and feature tracking have
been applied in-situ [8], [19], which demonstrates their
interest in the context of large-scale data. Nonetheless,
major bottlenecks of state-of-the art topology tracking
methods are still the high required computation cost
as well as the need for high temporal resolution.

In this talk, we propose a novel feature-tracking
framework, which correlates topological features in
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time-varying data in an efficient and meaningful way.
It is the first approach, to the best of our knowl-
edge, combining the setting of topological data anal-
ysis with optimal transport for the problem of fea-
ture tracking. More precisely, the key idea is to use
combinatorial optimization for matching topological
structures (namely, persistence diagrams) according to a
fine-tuned metric. After exposing our formal setting,
we introduce an extension of the exact assignment
algorithm by Kuhn and Munkres [7], [10] that we
adapt in an efficient way to the case of persistence di-
agrams. We highlight the issues raised by the classical
Wasserstein metric between diagrams, and propose a
robust lifted metric that overcomes these limitations.
We then present the detailed tracking framework.
Extensive experiments demonstrate the utility of our
approach.

2 CONTRIBUTIONS

This talk will present the following new contributions
(further described in [15]:

1) Approach: We present a sound and original
framework, which is the first combining topol-
ogy and transportation for feature tracking, com-
paring favorably to other state-of-the-art ap-
proaches, both in terms of speed and robustness.

2) Metric: We extend traditional topological met-
rics, for the needs of time-varying feature track-
ing, notably enhancing geometrical stability and
computing time.

3) Algorithm: We extend the assignment method
by Kuhn and Munkres to solve the problem of
persistence matchings in a fast and exact way,
taking advantage of our metric.

4) Implementation: We provide a lightweight
VTK-based C++ implementation of our ap-
proach for reproduction purposes.
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Fig. 1. Overview of our tracking approach on a dataset consisting of eight whirling gaussians: persistence
diagram computations for two consecutive timesteps (a) and (b); matching of persistence pairs of two timesteps
(c), propagation of matchings and construction of a trajectory (d).

Fig. 2. Boussinesq flow generated by a heated
cylinder (a). Feature tracking is performed (b) on
the fluid vorticity. Some vortices exist over a long
period of time (c), as others vanish more rapidly
(d), sometimes akin to noise (e). Feature trajecto-
ries can easily be filtered from their lifespan.

Fig. 3. Simulated von Kármán vortex street (a),
on which minima and maxima of the vorticity are
tracked with our approach and 1% persistence
filtering (b). Only taking the geometry and scalar
value into account while doing the matchings (i.e.
completely ignoring the birth in the lifted met-
ric), is not sufficient to correctly track features
(c). Maxima only are tracked considering 1 frame
every 5 timesteps (d). With the same temporal
resolution, the overlap-based approach (e) does
capture small trajectories corresponding to noise,
displayed with thinner lines, that have to be filtered
for instance using topological simplification [16].
Considering 1 frame every 7 timesteps (f) still
yields correct trajectories up to the point where,
every other frame, optimal matchings for the metric
are between a feature and the preceding one, due
to features traveling fast. The overlap approach (g)
is less stable in this case as it extracts erroneous
trajectories from the very first stages of the simu-
lation to the end.


